Earthquake physics from small to global scales
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Global scales — megaquakes
Small scales — tectonic tremor

95 | [Chile 1960 | -
| Alaska 1964 Japan 2011
NW Biterwater ,  ~, JPakfield Gholame SE 8 9 Kamchatka 1952 Sumatra 2004 T
)
= 8.5 |
< l
& x | | I
‘| | . ”I N \ ||

> il ki

1 1 1 I E 7 5 "
-80 -60 -40 20 0 20 40 60 l
Along-fault distance (km)

Hu‘ R m'!l ||! “lh it \u 3
v e 2

1900 1920 1940 1960 1980 2000
Year



Goal: improve our understanding of
the basic physics of earthquakes.

Interdisciplinary problem -- draws
on physics, seismology, materials
science, engineering, efc.




Physics of Earthquakes
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Seismologists do not have a complete
description of the physics governing
earthquake rupture. Why?

100

1st Problem: Earthquakes happen
deep in the earth’s crust, and we can’t
observe them directly

Distance (degrees)

Look at seismic
waves instead.




Physics of Earthquakes

Seismologists do not have a complete
description of the physics governing
earthquake rupture. Why?

2nd Problem: Occur at extreme /

physical conditions (hard to replicate in
lab experiments)

« Large slip velocities (~1 m/s), Large
slip (up to 20 m)

 Large confining pressures (~100
MPa), fluids present

« All current data compromises on at
least one of these conditions




Physics of Earthquakes

But even if we knew all the basic physics, we're still
faced with the problem that earthquakes are complex
systems, with a huge range of important length and
time scales:

Contacts Grains Friction Faults Networks

Increasing length scales

—

Increasing time scales



Multi-Scale Earthquake Problem

Time &

" Networks

Faults

Friction

Grains

Contacts

—

—
“Vertical:”  “Horizontal:” each level is a
connect complex, often heterogeneous,

different  dynamical system, with rich
scales behavior, and many unknowns

ﬁ

—

In this talk, “horizontal” approach at two
different scales: Friction and Networks.



Multi-Scale Earthquake Problem

At friction scale, use observations
. . At network scale, look at
of nonvolcanic tremor (tiny

. . occurrence of largest earthquakes
earthquakes occurring deep in the . . .
to determine if there is correlation
crust) to learn about the nature of
o between them.
friction in the earth.
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Nonvolcanic Tremor
Shelly and Hardebeck, GRL, 2010
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What is unique about tremor?
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Different types of seismic signals, and
events occur in “bursts” of activity. Peng and Gomberg, 2010
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Cumulative number of events

NW Bltterwater

Tremor behaviors
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Look at an example
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Tremor behaviors

Look at a second
Parkfleld Cholame SE

NW Bltterwater
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Modeling Tremor

_Parkfield Cholame
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|dea: friction at depth is both brittle and ductile.
Develop a simple model for this, and use
observations to determine frictional properties at

depth.

Earthquakes occur
in the brittle upper
~15 km of crust.

Friction gradually
changes from brittle
to ductile in lower
crust, where tremor
OoCcurs

m

)

A Y,

Brittle patches pyctile fault

(Top view of fault plane)



Brittle-Ductile Friction Model

|dea: bristles represent brittle
I . .
fault patches (resist motion,

then fail). Other patches
m J\/\N V behave in a ductile manner
(sllde stably).

[NV ] Friction is the sum of brittle
Brittle and ductile parts.

friction

friction icti
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Ductile
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NW Bltterwater

Cumulative number of events

Comparison with observations

Jarkield Cholame
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What controls tremor behavior?

Tremor (27.5 km depth) Shallower Tremor (21 km depth)
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Model Dynamics ., et ai. GRL, 2011)

Can we say anything more general about the dynamics?
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Clustering of Large Earthquakes?

Cumulative Moment Release Since 1900
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Analysis Methods

M=7,T=1year

Time

Simple approach: for a
magnitude threshold M, divide
catalog into bins of length T.
Count number of events in
each bin.

Compare cumulative

distribution of bin occupation Plot shows clustering in catalog.
numbers from data (red curve) More bins with large number of
to distribution expected for events than expected if

Poisson statistics (blue curve). earthquakes are random.



PAGER Catalog Analysis
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Is this statistically significant?

Use scalar measure of clustering: variance normalized by

Compare datato many  the average (=1 for Poisson, >1 if clustered)
(10°) synthetic catalogs

to determine how V=
likely the clustering is.
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Aftershocks?

e However, subject to arbitrary
Is clustering due to aftershocks? Large assumptions as catalog contains a
earthquakes can have large aftershocks. mixture of faulting types with

Remove aftershocks using a simple window
method (Knopoff and Gardner, 1974).

S 95 100°E -‘135".;
N e Both rupture
3 Vs lengths ~300
2002 (M,, 73)'
s S ()
2000 (M 7.9) : Denali 2002
! s (M7.9)
% 150L°w‘ 148°W W aaw Tz{w




Clustering without aftershocks?

Most of the clustering goes away — only systematic

clustering is observed at M7 for long time windows.
Repeat analysis with

catalog with aftershocks M7 clustering at long time windows occurs in early part
removed. of century when magnitudes are uncertain, so unclear if
this is real.
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What does this mean?

Earthquake catalog appears to be random in time.

But data is limited — how much can 110 years of data tell us about the
biggest earthquakes (say M8 and above, 80 events in PAGER)? Perform
statistical tests on two synthetic catalogs that contain clustering.
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1.

Statistical Tests

Perform several tests on ensembles of clustered catalogs.

Variance test (used in analysis of PAGER catalog). General indicator of

clustering.

<n?>—<n>2

<n >

‘r

“Window test.” Compare event rate in 2 year after biggest earthquakes

to background. Should work well on Aftershock-type catalog.
>

Magnitude ITT T T

Time
“Recurrence test.” Compare interevent time following the biggest
earthquakes to average recurrence. Should work well on
Inhomogeneous-type catalog.
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Results of Statistical Tests

Probability of identifying
catalog as random
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Things to note:
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Variance misses most clustered catalogs with only 110 years of data!
Specific tests fare much, much better with little data. Physical insight
into clustering can help devise better statistical tests.

All catalogs improve with additional data, but improvement can be slow.
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